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In the isobar model the fact that the final-state isobar channels overlap calls for an 
investigation in which unitarity provides constraints on the construction. The discontinuities 
in all the physical two-body subenergies are treated, allowing for two-body intermediate 
states. The process KN + Kn;N is used for illustration throughout. The discontinuity 
formulas are applied to the isobar expansion of the amplitude; rather explicit attention 
is given to the details of spin in order to show how the recoupling problems can be un- 
raveled. The resulting subenergy discontinuities take the form of integrations across the 
Dalitz plot. An example is given in conclusion in which s-waves dominate in the final 
state, so that a modest number of coupled isobar amplitudes enter in the constraint re- 
lations. 

1. INTR~DUOTION 

Hadron reactions leading to three-body linal states have continued to present 
considerable analytical complexity. Their analyses have great practical significance 
because they offer a means of obtaining two-body information about systems to which 
we have almost no other access. Phenomenologies relating to the TUT interaction in 
TN + rrrrN and the KTT interaction in KN -+ KTTN are prime examples. Our interest 
in such production processes therefore calls for their construction in terms of two- 
body interactions. The isobar model has long been adopted as the procedure for doing 
this. 

In the isobar model, separate channels are associated with the three possible ways 
of organizing the three-body final state as a two-body isobar plus a third particle. 
The model then expresses the two-body to three-body production amplitude as the 
sum of the amplitudes to the separate channels. Each term contributing to the pro- 
duction process takes the form of an amplitude leading to three particles, two of which 
are in a state with definite quantum numbers (an isobar state). This construction in 
terms of isobar amplitudes is indicated in Fig. 1. It is clear that overlapping of states 
occurs in this scheme and it would appear that opportunities for multiple-counting 
effects arise. To suppress these effects the constraints due to unitarity must be invoked. 
The implications of these constraints have been investigated by Aaron and Amado [l] 
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FIG. 1. The production amplitude as a sum of isobar amplitudes. 

and by Aitchison [2]. Their studies pertain to the use of unitarity in the pair-subenergy 
variables of the production amplitude; the treatments in Refs. [I, 21 are of systems of 
particles without spin. 

Our phenomenological motives, cited in the first paragraph, concern processes 
with a nucleon target. This work thus has to deal with all the details due to spin and 
isospin. For definiteness we choose to develop the formalism for KN--+ E&N, an 
example for which the notation can be made reasonably transparent. 

The momenta and helicities are as shown in Fig. 1, in which 

K(q) + N(P,) - K(k) + 4~) + NQJ. (1) 

The invariant mass variables, which are physical for the production process, are 

the final xN mass2 ~‘1~ = -(Q + PI”, 
the final KN mass2 wzp = -(Q + k)2, 

the final KTT mass2 .Y = -(k + p)Z, (2) 

and the total mass2 w2 = -(P + q)“. 

These variables are related by 

w12 + w22 + x = W2 + M2 + m2 + p2, (3) 

where M, m, and TV are the masses of the N, K, and rr. 
It is useful to express the amplitude for reaction (1) in the three equivalent forms 

WQppqKQp out I A I pq in>, (4) 

WQWKQk out I .L I Pq in>, (5) 

and N(kpPq) ii,(kp out j .f / Pq in>. (6) 

The factor N(Qp . ..) contains the normalization of states; e.g., N(Q) = (QJM)lP, 
N(p) = (2~1,,)l/~, etc. The discontinuity in the variable u’~ may then be expressed 
in terms of (4) as 

NQpPd((Qp out I .h IPq in> - (QP in I .A lPq in>), (7) 

in which the first and second terms are related by analytic continuation from 
( W + i0, w1 + i0) to ( W + i0, w1 - i0). By means of standard methods, expression 
(7) becomes 

in c” S(Q” + p” - Q - p) N(QPq) (Q jj,, 1 Q”p” out)(Q”p” out 1 jK 1 Pq in>. (8) 
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The summation is over all the degrees of freedom of the intermediate TN-state. 
The first matrix eIement in (8), when multiplied by the normalization factor N(QQp”), 
is the elastic VTN -+ rrN amplitude, continued to w1 - i0. If we proceed in a similar 
fashion, the discontinutity in w2 may be found from (5) to be 

i(2n)4 c” S(Q” + k” - Q - k) N(QPq) (Q ljK 1 Q”k” out)(Q”k” out 1 j, 1 Pq in), (9) 

in which there appears the KN -+ KN amplitude, continued to wZ] - i0. Likewise, 
the discontinuity in x may be derived from (6): 

i(2n)4 c” 6(k” + p” - k - p) N(kPq) fiO(k I j,, 1 k”p” out)(k”p” out 1 f 1 Pq in), (10) 

wherein there occurs the Krr + Kn- amplitude, continued to x - i0. These discon- 
tinuity relations are shown pictorially in Fig. 2. Also shown in Fig. 2 is the result for 
the discontinuity in W: 

i(2r)4 c” S(P” + q” - P - q) N(QpP) (Qp out I j, I P”q” in)(P”q” in I jK I P), (11) 

in which the KN + KN amplitude appears, continued to W - i0. 
Of course it should be emphasized that only the two-particle contributions have 

been given in the foregoing unitarity relations. Expressions (8), (9) and (10) are com- 
plete only if the subenergies are less than their respective inelastic thresholds. The 
discontinutity in W, result (1 l), is notably incomplete without the contribution from 

-..... (b) -x = 

‘. ‘. ‘. /’ 
,... _..... 

Pp 
,..’ . . . . . . _ 

FIG. 2. Discontinuities of the production amplitude: (a) in the TN subenergy wl, (b) in the KN 
subenergy w, , (c) in the K?r subenergy’ x, and (d) in the total energy W. 
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the &&iV intermediate state. In this work we restrict our attention to the effects of 
two-body unitarity in all the physical subenergy channels, and show how these 
effects constrain the isobar model. It is evident that the subenergy discontinuitites 
of the isobar amplitudes are constraints which lead to integral equations by means 
of dispersion relations. It will be helpful to visualize what follows in terms of Figs. 1 
and 2; we take the isobar expansion of Fig. 1, feed it into the results of Fig. 2. and 
extract the consequences. This construction is illustrated in Figs. 3, 4, and 5. It should 
be noted that the evaluation of a given subenergy discontinuity singles out only 
that isobar configuration which has that subenergy for one of its variables. On the 
right-hand side in each of these three figures there are three contributions, two of 
which involve the participation of the “other” two isobars. Our chief objective is to 
show how these recoupling contributions are unraveled. 

FIG. 3. The w,-discontinuity in the isobar model. 

FIG. 4. The rv,-discontinuity in the isobar model. 

FIG. 5. The x-discontinuity in the isobar model. 

2. ISOSPIN 

The role of isospin in this investigation is conveniently handled in terms of pro- 
jection operators. We let the rr have a Cartesian isovector index i, and represent 
the K and the N by isospinors. The elastic amplitudes may then be expanded in ampli- 
tudes of definite isospin: 

M(?TiN + 77jN) = 1 xZf:Mfl, 
5 

M(KN-+ KN) = c dtzMt”, (12) 
t, 
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The three contributions to the production amplitude shown in Fig. 1 may be expanded 
in amplitudes of definite total isospin T and isobar isospin: 

M(Kiv+ (rJlq K) = c cpMTf’, 
Ttl 

M(KN --+ (NV) ?TJ = c 9pMTt2, (13) 
7% 

M(KN + (f&r,) N) = c @MTt. 
7t 

We have listed the projection operators a, 8, c, G?, B, and %? in Appendix A. 
The unitarity relation shown in Fig. 3 reads 

disc,, c tZ?pMTtl 
rt1 

The symbol I,,,, refers to the summation over all the intermediate-state phase space 
in the w,-channel. Here, and throughout, the subscript (-) denotes analytic conti- 
nuation to the bottom of the relevant cut, in this case to w1 - i0, When we use 
formulas (A7) we obtain the result 

disc,, MTtl = 2rri c M: M”’ + c CZ,teMTtl + 1 C&M” . (15) 
% t z t 

The C’s are constants, elements of the crossing matrices, recorded in Table I. The 
relation shown in Fig. 4 reads 

We obtain, with the help of Eqs. (A8), 

disc,, M *% = 2rri c M: 
( 
c C&,MTtl + MTt2 + c C&MTt . 

top t1 t 

In the same fashion, the relation shown in Fig. 5, which reads 

(16) 

(17) 

(18) 
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TABLE I 

Crossing-Matrix Elements 

T=O 

0 1 

ib 0 1 
3 0 0 

(C,:tJ T-O 

0 1 

-2 0 1 

3 2 0 0 

T 1 

becomes, with the aid of Eqs. (A9) 

disc, MT’ = 2~i 1 Mpt 
f 
c CglMTtl -C F &MTfi mf MT’). (19) 

.c tl 1 

All crossing-matrix elements appearing in (15), ( 17), and (I 9) have been listed in 
Table 1. 

It is obvious that the evaluation of the W-discontinuity, expression (11) and Fig. 2d, 
leads to the results 

discw MTfl = 2ni c MTilMm ‘, 
W 

similarly for 1 + 2, and cm 
disc,,, MT’ = 2ri 1 MT’MmT. 

W 

In Eqs. (20) the factor MeT stands for the KN ---z KN amplitude, with isospin T 7 0 
and 1, continued to W - i0. 

3. ISOBAR EXPANSION 

The amplitudes in the isobar expansion of Fig. 1 correspond to terms in an angular 
momentum decomposition. Summation is implied over quantum numbers associated 
with the total angular momentum, JM, and the isobar angular momenta. ,jrr?~, for 
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rrN, j,m, for KN, and Im for Krr. There also occur assorted helicities, combinations 
of which correspond to states of definite parity. We follow the development due to 
Wick [3], and are particular about our definitions so as to minimize the number of 
troublesome phases which can enter the construction. 

To describe momenta and helicities PA + q + QV + k + p in the overall center- 
of-mass system (CM) we adopt the reference configurations shown in Fig. 6. For 

X 

FIG. 6. Reference configurations for CM momenta in the initial and final states. The Y axis 
points toward the reader. 

the initial state the nucleon momentum p is along the 2 axis; for the final state the 
momenta & x, and fi lie in the XZ plane with the nucleon momentum B along the 
Z axis. Rotations and Lorentz transformations then generate the states for which we 
desire angular momentum expansions. Even though some rotation angles can be 
chosen to vanish we let them all be arbitrary; the bookkeeping is no more cumbersome 
and in fact is more symmetrical this way. 

If we identify the rotation I whose Euler angles are (c&O) such that P = rP then 
the initial state in CM is expanded as 

Throughout, we use the notation NJ = ((W + 1)/47T)lL2. 
In the final state we define the three vectors in CM: 

Qa = Q +P, 

Qb = Q + k 
Kc =kfp. 

(22) 

Three different angular momentum coupling schemes are possible and all three are 
needed. Suitable rotations of @fi take us to states for which we can use the basic 
formula [3, Eq. (24)] and its inverse, or a variant of it. 

The Y-rotation, r,, ,, , applied to the reference configuration rotates i to the negative 
Z axis. In the rest fr”ame of Qa (CM,), the nucleon momentum is Q1 with direction 
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(6,) &). If the subsequent rotation rr, whose Euler angles are (&O,$,), leads to the 
final state in CM, then we can expand the final state as 

A nucleon spin rotation matrix enters; its angle w1 is deduced from the Lorentz 
transformation from CM, and is given later. 

The Y-rotation, &$, followed by the Z-rotation, rOOa, applied to @fi rotates 
j to the negative Z axis; the Z-rotation obviates the need for a phase factor in the 
application of Wick’s basic formula because it causes Q to be rotated to zero azimuthal 
position preparatory to rotation into its final orientation. In the rest frame of Q!b 
(CM,), the nucleon momentum is Q, with direction (9, , I,&). If the subsequent rotation 
r2 , with Euler angles (+#&), leads to the final CM state, then 

(24) 

The nucleon spin rotation angle w2 is determined by the Lorentz transformation from 
CM, and, like w1 , is given later. 

The third coupling scheme proceeds directly from the reference configuration. 
If r3 , with Euler angles (~,O&), applied to @$, leads to the final CM state then the 
expansion of j Q,kp) = R, [ &@) is desired. Wick’s formula must be modified 
here because the isobar momentum, & = & + 6, is oriented down, not up, along the 
Z axis. The resulting expansion is transparent enough, however: 

In the isobar rest frame in which K, has been transformed to rest (CM,), the K meson 
has momentum k3 with direction (8,) &). 

In this bewildering array of definitions we note that in CM, Qa (the nN isobar) 
has direction (0,) &), Qb (the KN isobar) has direction (0,) &), and Kc (the KIT 
isobar) has direction (7r - OS, & - 7r). Figure 7 provides a summary of all the angles 
we have defined. The various rotations applied to the reference configuration are 
connected to each other by the important relation 

rr 
-1 

1 ox,o = r2r00dOxb0 = h . (26) 
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FIG. 7. Angles defined for the three different coupling schemes in the final state: (a) applies to 
Eq. (23), (b) to Eq. (24), and (c) to Eq. (25). 

The isobar expansion follows from these angular momentum decompositions. 
The amplitudes of definite isospin T and definite isobar isospin introduced in (13) 
are expanded as 

M” = C N.,2Nzd!,,,(i+3) Do.,-, <wn I MJ” I A) Tt DL,h). 
JM 
1m 

(29) 

The isobar amplitudes on the right-hand sides of these equations have definite J 
and definite isobar spins. In addition these quantities depend on isobar and initial 
nucleon helicities; the parent fIna1 nucleon helicity appears in (27) and (28), while the 
outgoing nucleon helicity appears in (29). We defer the formation of amplitudes 
having definite isobar parity and definite overall parity until later. The isospin indices 
on which these amplitudes also depend are suppressed in the manipulations to follow. 
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4. SUBENERGY DISCONTINUITIES 

The w,-discontinuity is expressed in Eq. (15) and in Fig. 3. On the left-hand side 
we use Eq. (27). On the right-hand side we use Eqs. (27) (28) and (29) with inter- 
mediate-state variables (I!+;), (a$-,“), and (K&!), respectively, corresponding to the 
z-N variables Q;p” over which we must sum. In addition we also need the rrN elastic 
amplitude, expressed in CM so that spin rotations of the intermediate and final 
nucleon are required. When we assemble all these pieces we have 

E d”Q” d3p” M 
i(2’d4 ; .r (27$ Q,“p,” 2 

- S(Q” .$- p” - Q - p) 

N~l,d~v~z(w,) D$&) (v’ / M’l’ / A’>_ D$#‘) d;$(w;‘) 

Since isospin indices have been suppressed, the subscript C in the last two terms 
reminds us of the presence of the crossing matrices in Eq. (15). The Euler angles for 
the initial and final states have already been defined. In addition there are D-functions 
in (30) having the Euler angles (&I!J,O) for $I and (gL;LJIO) for 9: , the respective direc- 
tions of Q, and Q; in CM, . We note that r;’ has Euler angles (&fl,#;) because the 
momentum vector k is in a fixed direction while we integrate over Q” and p”; it follows 
that 

(30) 

(31) 

The integration is carried out in CM, . 
The contribution from the first term in braces on the right-hand side (the nN 

isobars) is 

in which the rrN phase space factor is 

pdwd = MQ,(Y)/~~~~w, . (33) 
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The contributions from the KN isobars and the KT isobars are more complicated. 
To perform the integrations over them we note, from Eq. (26), that 

and 
(34) 

From (34) it follows that 
(35) 

We can then use Eq. (31) and do the $; integration. The second and third terms in 
braces on the right-hand side of (30) become 

x C Njf&,(8;) d;!;,(w;) $,,,(x; + $1 e-in”e(m,P’ 1 M$ 1 x) 
i,rn,u’ 

When we return to Eq. (30) with results (32) and (38) we see that 

= 2~ip, c cp 1 A@’ 1 A’>- .2rr C 1 d cos ~,N,ld~l,.(~,) d3,%$ 
A’ Y 

(38) 

in which double primes have been dropped. This result is a constraint on the amplitude 
for the production of each TN isobar, as illustrated in Fig. 3. It is a complicated 
constraint because of the involvement in it of all the KN and Kn isobar amplitudes. 
The bothersome phase factor multiplying the KN isobar amplitude is a consequence 
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of the rotation r,, in Eq. (26) which arose from our convention about the Euler 
angles in CM, ; it is the price we pay for keeping phases out of Eq. (28) and probably 
represents the minimum intrusion of such factors. It is the only phase factor which 
enters throughout and it always enters in the same way: wherever (m# j MJjz / A:: 
appears, e- innrz appears multiplying it. The TN elastic amplitude <p / &PI j h), in 
Eqs. (30) on, depends only on w1 and satisfies the unitarity relation 

disc,, (CL 1 M’l / X,, = 2nipl c (y ~ M’l j A’; <A’ j M’l ! hj. 
,4’ 

(40) 

The w,-discontinuity, Eq. (17) and Fig. (4), is developed in similar fashion to give 
the constraint on the KN isobar amplitudes: 

All the nN and KT isobar amplitudes appear on the right-hand side. The KN elastic 
amplitude (CL 1 Mjz j h) depends only on w2 and satisfies 

(42) 

where the KN phase space factor is 

pz(w,) = MQ,(w,)/16n3w, . (43) 

The development of the x-discontinuity, Eq. (19) and Fig. (5), proceeds along the 
same lines except for one subtlety which must be incorporated in the initial assembly 
of the analog to Eq. (30). The integration is over the intermediate KT phase space 
with vectors k” and p”; in CM, , ki has Euler angles ($jl&O). Because the final nucleon 
(momentum Q, helicity u) is fixed with Euler angles ($J?,IJ,) we not only identify 
rjl to have angles (4303#g); we also must include a phase factor eiV(6s--lZ. Once this 
has been allowed for, the procedure leads to the constraint on the Kr isobar ampli- 
tudes: 

disc, (VW j MJz 1 hj - 2nip,M_’ (WI 1 MJz I A} 

= 2nip,hLz .27r j d cos 9,N,d!,,(8,) 
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in which all the TN and KN isobar amplitudes participate. The K?r elastic amplitude 
MI depends only on x and satisfies 

disc, M1 = 2nip,M-zMz (45) 

with Kn phase space factor 

p&c) = k,(x)/32n”(x)‘l” (46) 

For reasons which are apparent later, each of results (39), (41) and (44) has been 
written such that only recoupling terms appear on the right-hand side. 

The IV-discontinuities are elementary to construct from Eqs. (20). We get 

disc, (m,p 1 MJ” 1 h) = 2nip c (m,p 1 MJjl / h’)(X’ I MJ I A)-, 
A’ 

similarly for 1 --+ 2, and 

discw (vm 1 MJz 1 h) = 2rip c (vm j MJz j X’)(X’ 1 MJ I A)-. 
A’ 

(47) 

The last factor is the KN elastic amplitude, a function only of W. It satisfies Eq. (42) 
with the replacement of J forj, and W for w2 ; thus the phase space factor is the same 
function of W as p2 is of w2 : 

p(W) = MP(W)/167?W. (48) 

Since an isobar denotes a state of definite quantum numbers, the isobar amplitudes 
should be formed with definite isobar parity and the foregoing constraints should be 
accordingly modified. The parity properties of helicity states are given in [4], and 
parity conservation is invoked. We only need to take the appropriate combinations 
of nucleon helicities +& and -+ to do this (+ and - for short). The z-N and KN 
elastic amplitudes with definite parity, p = &, are 

M” = (+I Mi I+) + ys(-)j++ (-I Mi I+) (49) 

in which oh = -& 1. The Kn- elastic amplitude Mz of course already has definite parity 
(-)“. The TN and KN definite parity isobar amplitudes are combinations of 
(mp I MJj I h) for p = +-$ and -4 (again + and - for short): 

(m 1 MJ’” 1 A) = ((m+l MJ’ / h) + v8(-)jf* (m-l MJ’ 1 h))/2”“. (50) 

The KIT isobar amplitude (vm I MJz 1 A) already has definite isobar parity (-)“. 
A very useful construction can be introduced: 

where 

c d;,(8) d::(w) (mp I MJi 1 h) = c ej,“,(8) (m I MJjP / A), (51) 
u=zlJp B=f 

e;&Y) = (d;+(6) d$QJ) + ?j,(-)i++ d;,-(8) &@))/2? (52) 
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By means of Eqs. (49) to (52) we obtain, for amplitudes of definite isobar parity: 

(53) 

(54) 

and 

Of course we also have from Eqs. (40) and (42) 

disc,,, M”’ 1 
= 2~iplM~‘Mil”, (56) 

and similarly for 1 + 2. 
Amplitudes with definite overall parity, P = f, can also be formed in a straight- 

forward way. The discontinuity formulas become lengthy and call for even more 
notation. We have relegated these results to Appendix B. 

5. ISOBAR FACTORS 

The authors of Refs. [l, 21 have noted the consequences of adopting a certain two- 
factor form for each term in the isobar expansion. Each isobar amplitude is written 
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as the product of the elastic amplitude for scattering in the isobar state times a residual 
factor : 

(m, 1 MJj10 1 A) = Mqml 1 AJjl” 1 A), 

similarly for 1 + 2, and 

(57) 

(vm 1 MJz 1 A) = iW(vm 1 dJz I A). 

We refer to the &Z’s here as isobar factors. 
Expressions (57) are to be incorporated in Eqs. (53), (54), and (55). We then can 

use the identity 
disc(iKM) = (disc M) A + K(disc A’) (58) 

together with Eqs. (45) and (56) to obtain a cancellation on the left-hand side of the 
discontinuity formulas. The results are 

+ C Nzdk,@J do,,,-, C$Mtz(vm I dJz I A)” , 
I 1773 

(59) 

disc,, <mz I A%?~‘~’ I QTt2 

+ C Wd!,dQ dkm2(xd C&Mtz<vm I dJz I A>*” , 
lrn I 
t 

and 

disc, <vm I AJ1 1 A>Tt 

= 2rrip, *2rj-d cos 9,N,dk,,,&) 

w 
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These formulas, in which the isospin dependence has been reinstated, show that the 
isobar factor discontinuities are determined by the scattering and isobar factors 
in the other two isobar channels. 

6. DALITZ PLOT AND OTHER KINEMATICS 

Our discontinuity formulas each involve an integration over the cosine of the polar 
angle in the isobar rest frame: cos 6, for fixed Wand w1 , cos 6, for fixed W and w2 , 
and cos 9, for fixed W and x. Some kinematical intuition is to be gained by casting 
these in terms of integrations over the Dalitz plot. 

In Figs. 8a-q we have illustrated the configurations of the vectors Qkp in CM 
prior to the application of the final rotations r, , r2 , and r, ; three different rest frames 
are indicated along with the associated Lorentz transformations: CM, - CM 
under q , CM, + CM under z2, and CM, -+ CM under z3 . The isobar vectors 

and Kc are transformed from rest by z1 , z2 , and z3 , respectively. From 
$L fQI we deduce 

~0s $1 = (Qowl - QmQJQnQl - (6.3 

From Q = z2Q2 we obtain 

~0s $2 = (Qowz - QmQdlQbQ2. (63) 

From k = z,k, we get 

cos 9, = -(k&i2 - KcOk3J/Qk3. (64) 

FIG. 8. Three orientations of the vectors Q k p in CM in which: (a) Q. is along the 2 axis, (b) Qa 
is along the 2 axis, and (c) K, is along the -Z axis. The rest frames of the isobars Q. , Qb , and Kc 
are shown. The non-Euclidean figures for the determination of the spin-rotation angles w1 and we 
are also shown. 
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In terms of the invariants, the energies and momenta are 

Q, = ( W2 + M2 - x)/2W = (w12 + wz2 - m2 - p2)/2W 

and 

k, = ( W2 + m2 - w12)/2 W 

Qao = ( W2 + w12 - m2)/2 W 

Qao = (W” + ~2’ - p2)/2W 

Kc,, = ( W2 + x - M2)/2W, 

Ql, = (~‘1’ + M2 - p2)/2w, 

QzO = (M’~’ + M2 - m2)/2w2 

k,, = (x + m2 - p2)/2x1” 

and Q = (Qo2 - M2)1/2, 

: (wz2 + x - M2 - p2)/2W, 

and Qa = <Q:, - ~l’)~“, 

and Ql, = (Q;, - d)l”, 

and Q, = <Q,“, - M’)“‘, 

and Q2 = <Qh - M2)1”, 

and k, = (k&, - rn’)l”. 

(65) 

(66) 

(67) 

(68) 

(69 

(70) 

(71) 

(72) 

In Eqs. (59), (60), and (61) we want to transform the integration variables such that 
the TN, KN, and Kn isobar contributions are integrated over w1 , w, , and X, respec- 
tively. For the cos 9; integration at fixed Wand TV, , we use (62) to get 

d cm 4 = (w,wz/ WQ.Q,> dwz = -h/2 WQaQl) d-c (731 

for the cos 9, integration at fixed Wand w2 we use (63) to get 

d ~0s ~92 = (wlwzl WQbQz) dw, = -@z/2 WQbQz) dx; (74) 

for the cos 6, integration at fixed Wand x we use (64) to get 

d cos 9, = (wlx112/ WQk,) dwl = -(w&l”/ WQkJ dw, . (75) 

The integrations are over traversals of the Dalitz plot as shown in Fig. 9. 
All the angles appearing in the integrands can be related to the Dalitz plot variables. 

In Fig. 8a the angle xa in CM is identified. When we consider that Q = zlQl and use 
Eq. (62) we find that 

~0s xa = tQ,Qa, - w,Qm>/QaQ. (76) 

Likewise, Fig. 8b shows the angle Xb in CM so that when we use the relation Q = z,Q, 

together with Eq. (63) we get 

COS Xb = @&bo - WzQ,o>/QbQ. (77) 

The angles w1 and w2 remain to be identified; these describe the rotation of the nucleon 
spin in passing, respectively, from CM, to CM and from CM, to CM. If we consult 
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FIG. 9. The Dalitz plot for given W. Integrations at fixed wl, w2, and x are indicated. 

[3, Appendix] and compare with the non-Euclidean triangles drawn in Figs. Sa 
and b we conclude that 

~0s ~1 = @,QIo - ~2Qao/~~YQQ~ > (78) 

(y/Qd sin ml = (M/Q) sin 8, = W/QJ sin xQ , (79) 
cos w, = (QoQm - ~2Qm/~dQQz 7 (80) 

and 
(w2/Qb) sin w. = (M/Q) sin 8, = (h4/Q2) sin xb . (81) 

All of the cosine formulas in this section are rather lengthy functions of the invariants, 
owing to the unequal mass kinematics. 

7. APPLICATION 

A concluding example serves to illustrate our constraints put to use. We choose a 
set of circumstances for which each of the angular momentum summations can legi- 
timately be truncated to a single dominating term. 

We consider KN + K?rN at energies only a little larger than threshold. Because 
of centrifugal barrier effects it is then reasonable to suppose that only the s-wave 
systems in the final state will have appreciable amplitudes. Therefore we can discard 
all but one of the isobar amplitudes in each isobar channel. We keep only the rrN 

595/108/2-16 
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and KN isobars having j” = &-, and we keep only the I = 0 K?r isobar. The restric- 
tion to s-waves in all aspects of the final state means that only Jp = i+ is of interest. 

If we address ourselves to Eqs. (53), (54), and (55) for Jp = &+ we see from Eqs. (Bl) 
and (B2) that we wish to form combinations for which ~~ = ~~ = 4 (denoted +, 
for short) and 8 = 0; thus we have 

A4*+*-+ = (+I it@+- I+) - <+I iv+*- I-) 

for both the TN and KN isobars, and 

M+‘OO= (+ol M+“l+) - (+ol M’OI-> 

(82) 

(83) 

for the KT isobar. The formulas in Appendix B are most convenient because they 
provide for such combinations directly. 

At low energy the effect of nucleon spin rotation is negligible. As the spin rotation 
angle w  -+ 0, d:la(w) -+ a,, , so that e112- 9 + &‘(7Y)/2’lz in Eq. (52). Calculations “Y ( > 
(B8) and (B9), with a table of d-functions, then give: 

and 

f f ?-(w) = + cos(79 - F)/2, f $- i-(&Y) = - 4 sin(& - 6’)/2 

f $-- “,‘(lh!J,) = 4 cos(I!+/2), f$- ~-(&YJ = - 4 sin(a/2) (84) 

f %- ?(&9& = Q sin(@2). 

We adopt an abbreviated notation for the amplitudes since we need only work with 
one of each: we call the TN and KN isobar amplitudes in (82) M( Ww,) and M( Ww,), 
and the K?T isobar amplitude in (83) M(R). The elastic amplitudes for TN, KN, 
and K?T we denote M(w,), M(w,), and M(X), Equations (B5), (B6), and (B7) become 

disc,, M( Ww,) - 2+qkf-(wl) M( Ww,) 

= 2qj-iplM-(wl) 1 GEfJ!i 1~0s (‘l + Xa) 2 (‘2 - xb) e-im/Zj$fc(Ww& 

+ cos a- &(Wx$ (85) 

disc,, M(Ww,) - 2+.p&f-(w~ M(Ww,) 

= 2nip2ein/2M-(w,J J !C$!.!Z lcos (‘1 - Xa) 1 ($2 + Xb) M,(w~,,) 

+ cos v A&( Wx)l , 636) 

and 

disc, M( Wx) - 2+.Ql4-(x) M( Wx) 

= 2rip,M-(x) S y ]cos $9 Mc(Ww,) 

4 - Xb + cos 2 e -‘“/2~c(~~2) . 
I 

(87) 
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These equations form a coupled system of constraints on the set of isobar ampli- 
tudes, in principle the basis for further investigation, either dynamical or pheno- 
menological. 

APPENDIX A. ISOSPIN PROJECTION OPERATORS 

The isospin projection operators used in Section 2 are listed here. For the elastic 
amplitudes they are: 

ai; for rriN --f niN (tl = GJ and 3): 

L&f:” = (6ji -+ kjikTgN)/3, 

LC:i2 = (26jf - kjikrrN)/3; 

8% for KN + KN (t2 = 0 and 1): 

60 = (1 - TK . q/4, 

d’ == (3 + TK . @)/4; 

& for Kni + Knj (t = + and !;): 

l/2 
(ii = & + kjikTkK)/3, 

3'2 
*'ii z (26jt --- iEjfkTkK)/3. 

For the isobar amplitudes they are: 

6?%rtl forKN -+ (rriN) K (T = 0, t, = 8; T :_ I, t, == 4 and #): 

@ * zz ---(l/4 (3’/“))(7K - @’ 4. i,rK x TN)<, 

@f’ z= -(l/4 (3’/“))(3@ -1 @ + iTK j,’ TNji, 

@i * = ~--(I,/2 (@/2))(2+$ - i=K >: TN)~ : 

@a for KN + (KN)z-i (T :--- 0, t, == 1; T = 1, t, = 0 and 1): 

.%:” = (l/4 (31/2))(+ -- +’ f j+ >< TN)j , 

&” z .t(+ - TN - i@ .J TN)~, 

28;’ -1 (1/2(2’9)(T” + T”jj ; 

%‘rt for KN -+ (Kri) N (T == 0, t == 4; T = 1, t _ 6 and Q): 

%?y * = -(1/4(311”))(6 - TN -t i$ ;,: TN)~, 

%‘t t = --(l/4(31/2))(3~K + yN - i.rK x G’)i , 

‘e: ’ =z -(1/2(6112))(2+’ -!. i.rK y IJN)~ . 

(Al) 

642) 

643) 

(A4) 

W) 

w9 
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Section 2 we need formulas for products of (Al) with (A4) to (A6), (A2) with 
to (A6), and (A3) with (A4) to (A6). It can be shown that 

T t  T  c L$?!i’“z = vj cttp ) 

The C’s appearing in (A7) to (A9) are constants which have been recorded in the 
text in Table I. 

APPENDIX B. ISOBAR AMPLITUDES OF DEFINITE PARITY 

For the production of TN or KN isobars, of spin-parity jD, there are j + 4 inde- 
pendent amplitudes of definite angular momentum J and definite parity P. We label 
these as 

K = J’,. , ., L$ 

The amplitudes are combinations of <m 

(j + & values). 

1 MJj” j A): 

- r]~7j~(-)~+j (-K / kfJ’” I+) 

= (K j MJj9 1-t) + 7jp(-)J++ (K 1 MJj9 I-->. 
031) 

For the production of Kir isobars, of spin 1 and parity (-)z, there are 21 + 1 inde- 
pendent amplitudes of definite Jp. We label these as 

.$ = l,..., -1 (21 + 1 values). 
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The amplitudes are combinations of (vm 1 MJz 1 A): 

When (Bl) and (B2) are employed, and the appropriate combinations are taken. 
Eqs. (47) become 

disc, MJPj~‘x~ = 2nipMJPilP~~M$, 

similarly for 1 - 2, and 

discw MJpl’ = 2nipMJP1’M!‘. ( B4) 

The lengthier subenergy discontinuity formulas are obtained from (53), (54), and (55), 
using (Bl) and (B2): 

037) 
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In these formulas we have introduced the notation 

and 
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